Math, asked by nadafbashirg, 16 hours ago

tan ^-1 [3x^2 - 4y^2 / 3x^2 + 4y^2] = a^2​

Answers

Answered by preetiparadkar36
0

Answer:

Step-by-step explanation:

\tan ^-\left(1\right)\left[3x^2-4\cdot \frac{y^2}{3}x^2+4y^2\right]=a^2

\mathrm{Switch\:sides}

a^2=\tan ^-\left(1\right)\left[3x^2-4\cdot \frac{y^2}{3}x^2+4y^2\right]

Multiply

a^2=\tan ^-\left(1\right)\left(3x^2-\frac{4x^2y^2}{3}+4y^2\right)

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

a=\sqrt{\tan ^-\left(1\right)\left(3x^2-\frac{4x^2y^2}{3}+4y^2\right)},\:a=-\sqrt{\tan ^-\left(1\right)\left(3x^2-\frac{4x^2y^2}{3}+4y^2\right)}

Similar questions