Math, asked by wardeaditi, 4 days ago

tan-¹(67/19)=tan-¹(5/13)+cos-¹(3/5)​

Attachments:

Answers

Answered by suhail2070
2

Answer:

L.H.S = R.H.S

Step-by-step explanation:

EXPLANATION IS IN THE PHOTO.

Attachments:
Answered by ajajit9217
0

Answer:

Proof given below

Step-by-step explanation:

To prove:

tan⁻¹ \frac{67}{19} = tan⁻¹ \frac{5}{13} + cos⁻¹ \frac{3}{5}

Taking RHS,

tan⁻¹ \frac{5}{13} + cos⁻¹ \frac{3}{5}

We know that cos⁻¹ \frac{3}{5} = tan⁻¹ \frac{4}{3} (using inverse trigonometric value)

=> tan⁻¹ \frac{5}{13} + cos⁻¹ \frac{3}{5} = tan⁻¹ \frac{5}{13} + tan⁻¹ \frac{4}{3}

We know that tan⁻¹ x + tan⁻¹ y = tan⁻¹ \big(\frac{x+y}{1-xy }\big)

=> tan⁻¹ \frac{5}{13} + tan⁻¹ \frac{4}{3}   = tan⁻¹ \big(\frac{\frac{5}{15} + \frac{4}{3}}{1-\frac{5}{15}* \frac{4}{3} }\big)

                                = tan⁻¹ \big(\frac{\frac{15+52}{39}}{\frac{39-20}{39}}\big)

                                = tan⁻¹ \big(\frac{\frac{67}{39}}{\frac{19}{39}}\big)

                               = tan⁻¹ \big(\frac{67*39}{39*19}}\big)

                               = tan⁻¹ \big(\frac{67}{39}}\big)

                               = LHS

As LHS = RHS,

Hence proved.

Similar questions