Math, asked by ZAYN71, 1 year ago

tan/1-cot+cot/1-tan=1+sec×cosec​

Answers

Answered by anu24239
4

ANSWER.....

 \frac{tan \alpha }{1  -  \cot \alpha  }  +  \frac{cot \alpha }{1 - tan \alpha }  \\  \\  \frac{  \frac{ \sin \alpha  }{  \cos \alpha   }  }{ \frac{  \sin \alpha  - \cos \alpha }{ \sin \alpha  } }  +  \frac{ \frac{ \cos \alpha  }{ \sin \alpha } }{ \frac{ \cos \alpha  -  \sin \alpha  }{ \cos( \alpha ) } }  \\  \\  \frac{ {sin}^{2}  \alpha }{ \cos \alpha ( \sin \alpha  -  \cos \alpha )  }  +  \frac{ {cos}^{2} \alpha  }{ \sin \alpha ( \cos \alpha  -  \sin \alpha )  }  \\  \\  \frac{ {sin}^{3} \alpha  -  {cos}^{3} \alpha   }{ \cos \alpha  \sin \alpha  {(sin \alpha   -   \cos \alpha ) } }  \\  \\  \frac{( \sin \alpha  -  \cos \alpha )( {sin}^{2} \alpha  +  {cos}^{2}  \alpha  +  \sin \alpha  \cos \alpha )  }{ \cos\alpha \sin \alpha  {( \sin \alpha  -   \cos \alpha )   } }  \\  \\  \frac{1 +  \cos\alpha  \sin \alpha   }{ \:  \cos \alpha  \sin \alpha  }  \\  \\  \frac{1}{ \cos\alpha \sin \alpha   }  +  \frac{ \cos\alpha \sin \alpha   }{ \sin \alpha \cos \alpha  }  \\  \\  \sec \alpha  \csc \alpha  + 1

#BTSKINGDOM

Similar questions