tan∅/1-cot∅ + cot∅/1-tan∅ = 1+ sec∅ cosec∅
Answers
Answered by
0
Step-by-step explanation:
\begin{gathered}\frac{tanx}{1-cotx}+\frac{cotx}{1-tanx}\\\\=\frac{tanx}{\frac{tanx-1}{tanx}}+\frac{1}{tanx}\frac{1}{1-tanx}\\\\=\frac{tan^2x}{tanx-1}-\frac{1}{tanx\ (1- tanx)}\\\\=\frac{tan^3x-1}{tanx(tanx-1)}\\\\=\frac{(tanx-1)(tan^2x+tanx+1)}{tanx(tanx-1)}\\\\if\ tanx\ \neq\ 1,\ then:\\\\=tanx+1+Cotx\\\\=1+\frac{sinx}{cosx}+\frac{cosx}{sinx}\\\\=1+\frac{sin^2+cos^2x}{sinx\ cosx}\\\\=1+secx\ cosecx\end{gathered}
1−cotx
tanx
+
1−tanx
cotx
=
tanx
tanx−1
tanx
+
tanx
1
1−tanx
1
=
tanx−1
tan
2
x
−
tanx (1−tanx)
1
=
tanx(tanx−1)
tan
3
x−1
=
tanx(tanx−1)
(tanx−1)(tan
2
x+tanx+1)
if tanx
= 1, then:
=tanx+1+Cotx
=1+
cosx
sinx
+
sinx
cosx
=1+
sinx cosx
sin
2
+cos
2
x
=1+secx cosecx
Similar questions