Math, asked by hussainmushtaq415, 9 months ago

tan/1-cot+cot/1-tan=1+tan+cos​

Answers

Answered by amansharma264
3

\orange{ \underline{\underline{correct \: question}}} \\ \green{\frac{ \tan(o) }{1 -  \cot(o)} + \frac{ \cot(o) }{1 -  \tan(o) }} \\    \green{ = 1 +  \sec(o) \csc(o)} \\ \green{o = theta} \\  \mathcal{\green{LHS}} \\ {\frac{ \frac{\sin(o) }{\cos(o)}}{1 - \frac{\cos(o) }{\sin(o)}}  +  \frac{ \frac{ \cos(o)}{\sin(o) }}{1 -  \frac{\sin(o)}{ \cos(o) }}} \\ {\frac{\frac{\sin(o) }{\cos(o) }}{\frac{\sin(o) -  \cos(o) }{\sin(o) }} + \frac{\frac{\cos(o) }{\sin(o) }}{ \frac{ \cos(o) -  \sin(o)  }{ \cos(o) }}} \\  \\   = { \frac{\sin^{2} (o) }{\cos(o)(\sin(o) -  \cos(o)}}  \\ +   {\frac{ \cos^{2} ( o ) }{ \sin(o)( \cos(o) -  \sin(o))}} \\   \\ =  { \frac{ \sin^{2} (o) }{ \cos(o)( \sin(o) -  \cos(o))}}  \:  \:  \\  -  \:  {\frac{ \cos^{2} (o) }{ \sin(o)( \sin(o) -  \cos(o)}} \\   \\ = { \frac{ \sin ^{3} (o) -  \cos ^{3} (o)  }{ \cos(o) \sin(o)( \sin(o) -  \cos(o)) }} \\  \\   = { \frac{( \sin(o) -  \cos(o)( \sin^{2} (o) +  \cos^{2} (o) +  \sin(o) \cos(o) )}{ \cos(o) \sin(o)( \sin(o) -  \cos(o)  )}} \\  \\ = { \frac{1 +  \sin(o) \cos(o)  }{ \cos(o) \sin(o)}} \\ \\  = { \frac{1}{ \cos(o) \ \sin(o)} +  \frac{\sin(o) \cos(o)}{\cos(o) \sin(o)}} \\ \\ \orange{\underline{\underline{using \: commonando \: and \: dividendo}}} \\  \green{ \underline{\underline{\sec(o) +  \csc(o) + 1 \:  =  \:  \: proved}}} \\ \\  \orange{ \underline{\underline{LHS = RHS}}}

Similar questions