tan*/1-cot*+cot*/1-tan*
Answers
Answered by
2
(tan A)/(1 - cot A) + cot A /(1 - tan A)
= (tan A)/[(1 - (1/tan A)] + cot A /(1 - tan A)
= (tan2A)/[(tan A - 1)] + cot A /(1 - tan A)
= (tan2A)/[(tan A - 1)] - cot A /(tan A - 1)
= (tan2 A - cot A) / (tan A - 1)
= (tan2 A - 1/tan A) / (tan A - 1)
= (tan3 A - 1) / [tan A (tan A - 1)]
= (tan A - 1)(tan2 A + tan A + 1) / [tan A (tan A - 1)]
= (tan2 A + tan A + 1) / tan A
= 1 + tan A + cot A
= 1 + [(sin A/cosA) + (cos A/sin A)]
= 1 + [(sin2 A + cos2 A) / sin A cos A]
= 1 + [1 / (sin A cos A)] = 1 + (sec A x cosA) Hence proved
= (tan A)/[(1 - (1/tan A)] + cot A /(1 - tan A)
= (tan2A)/[(tan A - 1)] + cot A /(1 - tan A)
= (tan2A)/[(tan A - 1)] - cot A /(tan A - 1)
= (tan2 A - cot A) / (tan A - 1)
= (tan2 A - 1/tan A) / (tan A - 1)
= (tan3 A - 1) / [tan A (tan A - 1)]
= (tan A - 1)(tan2 A + tan A + 1) / [tan A (tan A - 1)]
= (tan2 A + tan A + 1) / tan A
= 1 + tan A + cot A
= 1 + [(sin A/cosA) + (cos A/sin A)]
= 1 + [(sin2 A + cos2 A) / sin A cos A]
= 1 + [1 / (sin A cos A)] = 1 + (sec A x cosA) Hence proved
Answered by
4
solve as per your need , or what need to prove ..
Attachments:
Similar questions