Math, asked by sakshamsingh301, 10 months ago


tan-1 (cot x).find derivative​

Answers

Answered by biligiri
4

Answer:

y = arctan (cot x) [ dy/dx (tanx) = 1/(x²+1) ]

dy/dx = 1/(cot²x + 1)* - cosec²x [ chain rule ]

=> (-cosec²x)/(cot²x + 1)

=> -cosec²x / cosec²x

= -1 [ cot²x + 1 = cosec²x ]

Answered by pulakmath007
1

The derivative of tan⁻¹ ( cot x ) is - 1

Given :

The expression tan⁻¹ ( cot x )

To find :

The derivative of the expression

Solution :

Step 1 of 3 :

Write down the given expression

Let y be given expression

Then y = tan⁻¹ ( cot x )

Step 2 of 3 :

Simplify the given expression

\displaystyle \sf{y =  {tan}^{ - 1} (cotx)  }

\displaystyle \sf{ \implies y =  {tan}^{ - 1} \bigg[tan\bigg( \frac{\pi}{2}  - x\bigg) \bigg] }

\displaystyle \sf{ \implies y =  {tan}^{ - 1} tan\bigg( \frac{\pi}{2}  - x\bigg) }

\displaystyle \sf{ \implies y =   \frac{\pi}{2}  - x}

Step 3 of 3 :

Find derivative of the expression

\displaystyle \sf{  y =   \frac{\pi}{2}  - x}

Differentiating both sides with respect to x we get

\displaystyle \sf{  \frac{dy}{dx}  =   \frac{d}{dx} \bigg[\frac{\pi}{2}  - x\bigg]  }

\displaystyle \sf{ \implies  \frac{dy}{dx}  =   \frac{d}{dx} \bigg(\frac{\pi}{2} \bigg) - \frac{d}{dx} \bigg(x \bigg) }

\displaystyle \sf{ \implies  \frac{dy}{dx}  =   0 - 1}

\displaystyle \sf{ \implies  \frac{dy}{dx}  =  - 1}

Hence derivative of tan⁻¹ ( cot x ) is - 1

Similar questions