Math, asked by James0023, 1 year ago

tan/1-tan -cot /1-cot= cos+sin/cos-sin

Answers

Answered by eudora
15

Answer:

Step-by-step explanation:

We have to prove \frac{(tan\theta)}{(1-tan\theta)}-\frac{cot\theta}{1-cot\theta}=\frac{(cos\theta+sin\theta)}{(cos\theta-sin\theta)}

We consider the left hand side of the equation

\frac{(tan\theta)}{(1-tan\theta)}-\frac{cot\theta}{1-cot\theta}=\frac{\frac{sin\theta}{cos\theta}}{(1-\frac{sin\theta}{cos\theta})}-\frac{\frac{cos\theta}{sin\theta}}{(1-\frac{cos\theta}{sin\theta})}

                          = \frac{sin\theta}{cos\theta-sin\theta}-\frac{cos\theta}{sin\theta-cos\theta}

                          = \frac{sin\theta}{cos\theta-sin\theta}-\frac{cos\theta}{[-(cos\theta-sin\theta)]}

                          = \frac{sin\theta}{cos\theta-sin\theta}+\frac{cos\theta}{(cos\theta-sin\theta)}

                          = \frac{cos\theta+sin\theta}{cos\theta-sin\theta}

                          = Right hand side of the equation

Hence proved.

Learn more trigonometric equations to prove from https://brainly.in/question/8227871

Similar questions