Math, asked by vanshkbhanushali, 4 months ago

tanΘ/1-tanΘ - cotΘ/1-cotΘ = cosΘ+sinΘ/cosΘ-sinΘ

Attachments:

Answers

Answered by narjishasanrizvi
2

Answer:

above attachment is your answer

I hope it will help you.

plzmark me as brainliest

Attachments:
Answered by vipashyana1
2

Answer:

 \frac{tanθ}{1 - tanθ}  -  \frac{cotθ}{1  - cotθ}  =  \frac{ cosθ+sin θ}{cosθ -sin θ}  \\  \frac{ \frac{sinθ}{cosθ} }{1 -  \frac{sinθ}{cosθ} }  -  \frac{ \frac{cosθ}{sinθ} }{1 -  \frac{cosθ}{sinθ} }  = \frac{ cosθ+sin θ}{cosθ -sin θ}  \\  \frac{ \frac{sinθ}{cosθ} }{ \frac{cosθ - sinθ}{cosθ} } -  \frac{ \frac{cosθ}{sinθ} }{ \frac{sinθ - cosθ}{sinθ} }   =  \frac{ cosθ+sin θ}{cosθ -sin θ} \\  \frac{sinθ}{cosθ}  \times  \frac{cosθ}{cosθ - sinθ} -  \frac{cosθ}{sinθ}  \times  \frac{sinθ}{sinθ - cosθ}  = \frac{ cosθ+sin θ}{cosθ -sin θ}  \\  \frac{sinθ}{cosθ -sin θ}  -  \frac{cosθ}{ sinθ-cosθ }  =  \frac{ cosθ+sin θ}{cosθ -sin θ} \\  \frac{sinθ}{cosθ - sinθ}  +  \frac{cosθ}{ cosθ-sin θ}  =\frac{ cosθ+sin θ}{cosθ -sin θ}   \\  \frac{sinθ +cosθ }{ cosθ- sinθ}  =\frac{ cosθ+sin θ}{cosθ -sin θ}   \\  \frac{ cosθ+sin θ}{cosθ -sinθ }  = \frac{ cosθ+sin θ}{cosθ -sin θ} \\  LHS=RHS \\ Hence \: proved

Similar questions