Math, asked by smitarani7980, 1 year ago

tanФ + 1 ÷ tanФ=secФ × cosecФ

Answers

Answered by Ruhanaziz
0

Answer:

p = tanФ + secФ

p - secФ = tanФ

p² + sec²Ф - 2 p secФ = tan²Ф = sec²Ф - 1

So secФ = (p² + 1) / 2p

so cosФ = 2p/(1+p²)

sinФ = √[1 - cos²Ф ] = (p²-1)/(1+p²)

cosec (Ф) = (1+p²)/(p²-1)

Answered by Anonymous
1

 \tan\alpha  +  \frac{1}{ \tan\alpha }  \\  \\   =  >  \tan\alpha  +  \cot \alpha  \\  \\  =  >  \frac{ \sin \alpha  }{ \cos \alpha  }  +  \frac{ \cos \alpha  }{ \sin \alpha  }  \\  \\  =  >  \frac{ { \sin}^{2}  \alpha  +  { \cos}^{2} \alpha   }{ \cos \alpha  \sin \alpha  }  \\  \\  =  >  \frac{1}{ \cos \alpha  \sin \alpha }  \\  \\  =  >  \frac{1}{ \cos \alpha  }  .  \frac{1}{ \sin \alpha  }  \\  \\  =  >  \sec \alpha . \csc \alpha  = R.H.S.

HENCE PROVED ✔️✔️

@ItsChampion ✌️

Similar questions