tan
1+tanx
IT
+ X
4
-tang
7
tan
х
4
Answers
Answered by
1
Answer: =tan(π4+x2)=RHS
Text Solution
Solution
We have
LHS=cosx(1−sinx)
=(cos2.x2−sin2.x2)(cos2.x2+sin2.x2−2sin.x2cos.x2)
⎡⎣⎢⎢∵cosx=(cos2.x2−sin2.x2),cos2.x2+sin2.x2=1 and sinx=2sin.x2cos.x2⎤⎦⎥⎥
=(cos.x2+sin.x2)(cos.x2+sin.x2)(cos.x2−sin.x2)
=(cos.x2+sin.x2)(cos.x2−sin.x2)=(1+tan.x2)(1−tan.x2)=(tan.π4+tan.π2)(1−tan.π4.tan.x2)
[dividing num. and denom . by cos .x2]
=tan(π4+x2)=RHS
Step-by-step explanation:
Similar questions
English,
1 month ago
Chemistry,
1 month ago
Social Sciences,
1 month ago
Business Studies,
2 months ago
Accountancy,
2 months ago
Physics,
9 months ago
Biology,
9 months ago