Math, asked by suyanshpatidar8934, 1 year ago

tan^-1 x + tan^-1 y + tan^-1 = pi÷2 , then find the value of xy + yz + zx

Answers

Answered by BEJOICE
3

 { \tan }^{ - 1} x +  { \tan }^{ - 1} y + { \tan }^{ - 1} z =  \frac{\pi}{2}   \\  { \tan }^{ - 1} x +  { \tan }^{ - 1} y  =  \frac{\pi}{2}   - { \tan }^{ - 1} z \\  { \tan }^{ - 1} ( \frac{x + y}{1 - xy} ) =  { \cot }^{ - 1} z =  { \tan}^{ - 1} ( \frac{1}{z} ) \\ therefore \\ \frac{x + y}{1 - xy} = \frac{1}{z}  \\ xz + yz = 1 - xy \\ xy + xz + yz = 1
Similar questions