Math, asked by nishtha109, 1 year ago

tan^-1((√x-x))/1+x^3/2)

Answers

Answered by shivanagu2005
0

The Reqd. Deri.=

1

,

if

1

<

x

<

1

;

=

1

,

if

x

>

1

:

1

,

if

x

<

1

.

Explanation:

Let  

u

=

tan

1

(

2

x

1

x

2

)

,

and

,

v

=

sin

1

(

2

x

1

+

x

2

)

.

Note that, because of the Dr. of  

u

,

x

R

{

±

1

}

...

.

(

)

x

<

1

,

or

,

1

<

x

<

1

,

or

,

x

>

1

.

Subst.  

x

=

tan

θ

.

(

)

,

θ

(

π

2

,

π

2

)

{

±

π

4

}

,

&

,

θ

=

tan

1

x

.

u

=

tan

1

{

2

tan

θ

1

tan

2

θ

}

=

tan

1

(

tan

2

θ

)

,

and

,

v

=

sin

1

{

2

tan

θ

1

+

tan

2

θ

}

=

sin

1

(

sin

2

θ

)

.

Case (1) :  

1

<

x

<

0

,

and

,

0

<

x

<

1

.

tan

(

π

4

)

<

tan

θ

<

tan

0

,

&

,

tan

0

<

tan

θ

<

tan

(

π

4

)

.

Since,  

tan

fun. is  

in all quadrants, it follows that,

π

4

<

θ

<

0

,

and

,

0

<

θ

<

π

4

.

π

2

<

2

θ

<

0

,

&

,

0

<

2

θ

<

π

2

.

&,  

by the Defns of  

tan

1

and

sin

1

functions, we have,

u

=

tan

1

(

tan

2

θ

)

=

2

θ

,

and

,

v

=

sin

1

(

sin

2

θ

)

=

2

θ

.

Thus,  

u

=

2

tan

1

x

=

v

,

if

,

1

<

x

<

1

.

Therefore, the Reqd. Deri.=

d

u

d

v

=

d

u

d

x

d

v

d

x

,

=

2

1

+

x

2

2

1

+

x

2

=

1

,

if

1

<

x

<

1

.

Case (2) :  

x

>

1

.

tan

θ

>

tan

(

π

4

)

θ

>

π

4

...

[

,

tan

is  

]

Preferably,  

π

4

<

θ

<

π

2

π

2

<

2

θ

<

π

.

π

2

π

<

2

θ

π

<

π

π

,

i

.

e

.

,

π

2

<

2

θ

π

<

0

.

Then,  

tan

(

2

θ

π

)

=

tan

(

π

2

θ

)

=

(

tan

2

θ

)

=

tan

2

θ

.

u

=

tan

1

(

tan

2

θ

)

=

tan

1

(

tan

(

2

θ

π

)

)

,

where  

(

2

θ

π

)

(

π

2

,

0

)

(

π

2

,

π

2

)

.

by the Defns. of  

tan

1

and

sin

1

functions, we get,

u

=

2

θ

π

=

2

tan

1

x

π

;

Also,  

sin

(

2

θ

π

)

=

sin

(

π

2

θ

)

=

sin

2

θ

sin

2

θ

=

sin

(

2

θ

π

)

.

v

=

sin

1

(

sin

2

θ

)

=

sin

1

(

sin

(

2

θ

π

)

)

=

sin

1

(

sin

(

2

θ

π

)

)

=

(

2

θ

π

)

=

π

2

tan

θ

=

π

2

tan

1

x

,

(

x

>

1

)

The Reqd. Deri.=

2

1

+

x

2

0

0

2

1

+

x

2

=

1

,

if

x

>

1

.

Case (3) :  

x

<

1

.

In this case,  

x

<

1

θ

<

π

4

.

We take,  

π

2

<

θ

<

π

4

π

<

2

θ

<

π

2

.

0

<

(

π

+

2

θ

)

<

π

2

(

π

+

2

θ

)

(

0

,

π

2

)

(

π

2

,

π

2

)

.

Also,  

tan

(

π

+

2

θ

)

=

tan

2

θ

,

&

,

sin

(

π

+

2

θ

)

=

sin

2

θ

.

u

=

tan

1

(

tan

2

θ

)

=

tan

1

(

tan

(

π

+

2

θ

)

)

=

π

+

2

θ

=

π

+

2

tan

1

x

,

and,  

v

=

sin

1

(

sin

2

θ

)

=

sin

1

(

sin

(

π

+

2

θ

)

)

=

sin

1

(

sin

(

π

+

2

θ

)

)

=

π

2

θ

=

π

2

tan

1

x

,

(

x

<

1

.

)

d

u

d

v

=

1

,

x

<

1


Similar questions