Math, asked by TbiaSupreme, 1 year ago

tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=.......(x/y≥0),Select Proper option from the given options.
(a) π/4
(b) π/3
(c) π/2
(d) π

Answers

Answered by pulakmath007
5

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

\displaystyle\sf{  { \tan}^{ - 1}  \bigg(  \frac{x}{y} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{x - y}{x + y}  \bigg)  \: }

CALCULATION

\displaystyle\sf{  { \tan}^{ - 1}  \bigg(  \frac{x}{y} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{x - y}{x + y}  \bigg)  \: }

 = \displaystyle\sf{  { \cot}^{ - 1}  \bigg(  \frac{y}{x} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{1 -  \frac{y}{x} }{1 +  \frac{y}{x} }  \bigg)  \: }

 \sf{Let \:   \: \displaystyle\sf{   \frac{y}{x} } = { \tan} \theta \:  \: \:  \:   \: so \: that \:   \:  \: \theta \:  =  { \tan}^{ - 1} \bigg(    \frac{y}{x}\bigg) \: }

Now

\displaystyle\sf{  { \tan}^{ - 1}  \bigg(  \frac{x}{y} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{x - y}{x + y}  \bigg)  \: }

 = \displaystyle\sf{  { \cot}^{ - 1}  \bigg(  \frac{y}{x} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{1 -  \frac{y}{x} }{1 +  \frac{y}{x} }  \bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -  { \tan}^{ - 1}  \bigg(  \frac{y}{x} \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{1 -  \frac{y}{x} }{1 +  \frac{y}{x} }  \bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -  { \tan}^{ - 1}  \bigg(  \tan \theta \bigg) - \:{ \tan}^{ - 1}  \bigg( \frac{1 -  \tan \theta }{1 +  \tan \theta }  \bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -    \theta- \:{ \tan}^{ - 1}  \bigg( \frac{ \tan \frac{\pi}{4}  -  \tan \theta }{1 + \tan \frac{\pi}{4}  \tan \theta }  \bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -    \theta- \:{ \tan}^{ - 1}   \tan \bigg(  \frac{\pi}{4}   -  \theta\bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -    \theta- \: \bigg(  \frac{\pi}{4}   -  \theta\bigg)  \: }

 = \displaystyle\sf{ \frac{\pi}{2}   -    \theta -  \frac{\pi}{4}    +  \theta\: }

 = \displaystyle\sf{ \frac{\pi}{2}    -  \frac{\pi}{4}  \: }

 = \displaystyle\sf{ \frac{\pi}{4}   }

RESULT

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions