Math, asked by deyranjit905, 3 months ago

tan 10°tan 25° tan 45°tan 65° tan 80°=1​

Attachments:

Answers

Answered by MrImpeccable
7

ANSWER:

To Prove:

  • tan 10° tan 25° tan 45° tan 65° tan 80° = 1

Proof:

\text{We need to prove that,}\\\\:\longrightarrow\tan10^{\circ}\times\tan25^{\circ}\times\tan45^{\circ}\times\tan65^{\circ}\times\tan80^{\circ}=1\\\\\text{Solving LHS,}\\\\:\implies\tan10^{\circ}\times\tan25^{\circ}\times\tan45^{\circ}\times\tan65^{\circ}\times\tan80^{\circ}\\\\\text{We know that,}\\\\:\hookrightarrow\tan\theta=\cot(90-\theta)\\\\\text{So,}\\\\:\implies\tan10^{\circ}\times\tan25^{\circ}\times\tan45^{\circ}\times\cot(90-65)^{\circ}\times\tan(90-80)^{\circ}

:\implies\tan10^{\circ}\times\tan25^{\circ}\times\tan45^{\circ}\times\cot25^{\circ}\times\cot10^{\circ}\\\\\text{On rearranging,}\\\\:\implies(\tan10^{\circ}\times\cot10^{\circ})\times(\tan25^{\circ}\times\cot25^{\circ})\times\tan45^{\circ}\\\\\text{We know that,}\\\\:\hookrightarrow\tan\theta\times\cot\theta=1\\\\\text{So,}\\\\:\implies(\tan10^{\circ}\times\cot10^{\circ})\times(\tan25^{\circ}\times\cot25^{\circ})\times\tan45^{\circ}\\\\:\implies(1)\times(1)\times\tan45^{\circ}\\\\:\implies\tan45^{\circ}

\text{We know that,}\\\\:\hookrightarrow\tan45^{\circ}=1\\\\\text{So,}\\\\:\implies\tan45^{\circ}\\\\:\implies\bf{1=RHS}\\\\\text{\bf{HENCE PROVED!!!}}

Formulae Used:

  • tanA = cot(90 - A)
  • tanA × cotA = 1
  • tan45° = 1

Learn More:

 \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Answered by punitharshtigga
1

Answer:

Good morning

sis

how are you

Similar questions