Math, asked by vsingh4398, 1 year ago

tan 15 .tan25+tan15.tan50+tan25.tan50​

Attachments:

Answers

Answered by MaheswariS
0

CONCEPT:

\bf\,tan(A+B)=\displaystyle\frac{tanA+tanB}{1-tanA\,tanB}

consider,

tan(15+25+50)

=\displaystyle\frac{tan(15+25)+tan50}{1-tan(15+25)\,tan50}

=\displaystlye\frac{\frac{tan15+tan25}{1-tan15\,tan25}+tan50}{1-\frac{tan15+tan25}{1-tan15\,tan25}\,tan50}

=\displaystlye\frac{tan15+tan25+tan50-tan15\,tan25\,tan50}{1-(tan15\,tan25+tan25\,tan50+tan50\,tan15)}

\implies\displaystyle\,tan90=\frac{tan15+tan25+tan50-tan15\,tan25\,tan50}{1-(tan15\,tan25+tan25\,tan50+tan50\,tan15)}

\implies\displaystlye\frac{tan15+tan25+tan50-tan15\,tan25\,tan50}{1-(tan15\,tan25+tan25\,tan50+tan50\,tan15)}=\infty

\implies\,1-(tan15\,tan25+tan25\,tan50+tan50\,tan15)=0

\implies\boxed{\bf\,tan15\,tan25+tan25\,tan50+tan50\,tan15=1}

Similar questions