Math, asked by milky9399, 2 months ago

tan 15°+tan 75°+cot 15°+cot 75°
options
1)4√3
2)√2
3)√6
4)8​

Answers

Answered by rishu6845
2

Answer:

   \boxed{\boxed{\huge { \pink{8}}}}

Step-by-step explanation:

tan75 \degree = tan(90 \degree - 15 \degree) \\tan75 \degree  = cot15 \degree \\ cot75 \degree = cot(90 \degree - 15 \degree) \\ cot75 \degree = tan15 \degree \\ tan15 \degree = tan(45 \degree - 30 \degree) \\  \\  =  \dfrac{tan45 \degree - tan30 \degree}{1  + tan45 \degree \: tan30 \degree}  \\  \\  =  \dfrac{1 -  \dfrac{1}{ \sqrt{3} } }{1 + 1 \:  \times  \dfrac{1}{ \sqrt{3} } }  \\   \\ =  \dfrac{ \dfrac{ \sqrt{3} - 1 }{ \sqrt{3} } }{ \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} } }  \\  \\ =   \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \\  =  \dfrac{( \sqrt{3}  - 1) \: ( \sqrt{3} - 1) }{( \sqrt{3} + 1) \: ( \sqrt{3}   - 1)}  \\  =  \dfrac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} }  \\  =   \dfrac{ {( \sqrt{3} \:  )}^{2}  +  {(1)}^{2}   - 2(1) \: ( \sqrt{3} )}{3 - 1}   \\  =  \dfrac{3 + 1 - 2 \sqrt{3} }{2}   \\ =  \dfrac{4  - 2 \sqrt{3} }{2}  \\  =   \frac{ 2(2 -  \sqrt{3} )}{2} \\   tan15 \degree = 2 -  \sqrt{3}  \\ cot15 \degree =  \dfrac{1}{tan15 \degree}  \\  =  \dfrac{1}{2 -  \sqrt{3} }  \\  =  \dfrac{(2 +  \sqrt{3} )}{(2 -  \sqrt{3}) \: (2 +  \sqrt{3})  }  \\  =  \dfrac{2 +  \sqrt{3} }{ {(2)}^{2}  -  { (\sqrt{3}) }^{2} }  \\  =  \dfrac{2 +  \sqrt{3} }{4 - 3}  \\  =  \dfrac{2 +  \sqrt{3} }{1}  \\  cot15 \degree = 2 +  \sqrt{3}  \\

tan15 \degree + tan75 \degree + cot15 \degree +  \cot75 \degree \\  = tan15 \degree + cot15 \degree + cot15 \degree + tan15 \degree  \\    = 2 \: tan15 \degree + 2 \: cot15 \degree  \\  = 2 \: (tan15 \degree + cot15 \degree) \\  = 2 \: (2  -  \sqrt{3}  + 2 +  \sqrt{3} )  \\  = 2 \: (4) \\  = 8

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

We know,

 \red{\rm :\longmapsto\:tan(90 \degree \:  - \theta ) = cot\theta}

and

 \red{\rm :\longmapsto\:cot(90 \degree \:  - \theta ) = tan\theta}

Now,

Consider,

\rm :\longmapsto\:tan15\degree \:  + tan75\degree \:  + cot15\degree \:  + cot75\degree \:

can be rewritten as

\rm \:  =  \: tan15\degree + cot15\degree + tan(90\degree -15\degree) + cot(90 - 15\degree)

\rm \:  =  \:  tan15\degree \:  + cot15\degree \:  + cot15\degree \:  + tan15\degree \:

\rm \:  =  \:  \: 2(tan15\degree \:  + cot15\degree \: )

\rm \:  =  \:  \: 2\bigg(\dfrac{sin15\degree \: }{cos15\degree \: }  + \dfrac{cos15\degree \: }{sin15\degree \: }  \bigg)

\rm \:  =  \:  \: 2\bigg(\dfrac{sin^{2} 15\degree +  {cos}^{2} 15\degree \: }{cos15\degree \: sin15\degree \: }  \bigg)

We know,

 \blue{ \boxed{\bf  \: {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this

\rm \:  =  \:  \: \dfrac{2 \times 1}{sin15\degree \: cos15\degree \: }

\rm \:  =  \:  \: \dfrac{2}{sin15\degree \: cos15\degree \: }

On multiply numerator and denominator by 2, we get

\rm \:  =  \:  \: \dfrac{4}{2 \: sin15\degree \: cos15\degree \: }

We know,

 \blue{ \boxed{\bf  \:sin2x = 2 \: sinx \: cosx}}

So, using this we have

\rm \:  =  \:  \: \dfrac{4}{sin( \: 2 \times 15\degree)}

\rm \:  =  \:  \: \dfrac{4}{sin30\degree \: }

\rm \:  =  \:  \: 4 \times 2

\rm \:  =  \:  \: 8

Hence,

\bf :\longmapsto\:tan15\degree  + tan75\degree + cot15\degree + cot75\degree = 8

Hence,

Option (4) is correct.

Additional Information :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Similar questions