tan⁻¹x-1/x-2 + tan⁻¹x+1/x+2= π/4,Solve it.
Answers
Answered by
2
here is ur answer. ..
Attachments:
Answered by
2
it is given that, tan⁻¹{(x - 1)/(x - 2)} + tan⁻¹{(x + 1)/(x + 2)} = π/4
we know,
tan⁻¹A + tan⁻¹B = tan⁻¹[(A + B)/(1 - AB)]
where, AB < 1
so, tan⁻¹{(x - 1)/(x - 2)} + tan⁻¹{(x + 1)/(x + 2)} = tan⁻¹[{(x - 1)/(x - 2) + (x + 1)/(x + 2)}/{1 - (x - 1)(x + 1)/(x - 2)(x + 2)}]
= tan⁻¹[{(x - 1)(x + 2) + (x + 1)(x - 2)}/{(x²-2²) - (x² - 1²)}]
= tan⁻¹{x² + x - 2 + x² -x - 2}/(-3)
= tan⁻¹(4 - 2x²)/3
now, tan⁻¹(4 - 2x²)/3 = π/4 ,
or, (4 - 2x²)/3 = tan(π/4)
or, (4 - 2x²)/3 = 1
or, 2x² = 1
or, x = ±1/√2
[ where (x-1)/(x - 2) × (x + 1)/(x + 2) < 1 ⇒(x² - 1)/(x² - 4) < 1
⇒(x² - 1 - x² + 4)/(x² - 4) < 0
⇒3/(x² - 4) < 0
⇒(x² - 4) < 0
or, -2 < x < 2 ]
hence, value of x = 1/√(2) and -1/√(2)
Similar questions