Math, asked by adityakhatri099, 6 months ago

tan^2+1-2tan upon cot^2+1-2cot=tan 2 prove above problem​

Answers

Answered by Anonymous
5

SOLUTION :

  \sf  \frac{{ \tan}^{2}  \theta + 1 - 2 \tan \theta}{ { \cot}^{2}  \theta + 1 - 2  \cot \theta}  \\

   \implies \sf  \frac{{( \tan - 1)}^{2} }{  {( \cot \theta - 1)}^{2} } \\

 \implies \:   \sf \: \frac{ {( \tan \theta - 1)}^{2} }{  ({ \frac{1 -  \tan \theta}{ \tan \theta} )}^{2} }  \\

 \implies \sf \:  -   { \tan}^{2}  \theta

Answered by kottieswari1996
1

Answer:

LHS=

(1+tan

2

A)

2

tanA

+

(1+cot

2

A)

2

cotA

(sec

2

A)

2

tanA

+

(cosec

2

A)

2

cotA

=

cos

4

A

1

cosA

sinA

+

sin

4

A

1

sinA

cosA

=sinAcos

3

A+cosAsin

3

A

=sinAcosA[sin

2

A+cos

2

A]

=sinAcosA=RHS

Hence proved.

Attachments:
Similar questions