Math, asked by seemajain0008, 2 days ago

tan 2π/18 tan 4π/18 tan 8π/18 = √k find the value of k ​

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

 \tt{tan \bigg( \dfrac{2\pi}{18}  \bigg) tan \bigg( \dfrac{4\pi}{18}  \bigg)  tan \bigg( \dfrac{8\pi}{18}  \bigg) }

  = \sf{tan \bigg( \dfrac{\pi}{9}  \bigg) tan \bigg( \dfrac{2\pi}{9}  \bigg)  tan \bigg( \dfrac{4\pi}{9}  \bigg) }

 = \sf{ \dfrac{sin \bigg( \dfrac{\pi}{9}  \bigg) sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{ cos \bigg( \dfrac{\pi}{9}  \bigg) cos\bigg( \dfrac{2\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } }

 = \sf{ \dfrac{ 2 sin \bigg( \dfrac{\pi}{9}  \bigg) \cdot \: sin \bigg( \dfrac{\pi}{9}  \bigg) sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{ 2 sin \bigg( \dfrac{\pi}{9}  \bigg) cos \bigg( \dfrac{\pi}{9}  \bigg) cos\bigg( \dfrac{2\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } } \\

 = \sf{ \dfrac{ 2 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  sin \bigg( \dfrac{2\pi}{9}  \bigg) cos\bigg( \dfrac{2\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } } \\

 = \sf{ \dfrac{ 4 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  2sin \bigg( \dfrac{2\pi}{9}  \bigg) cos\bigg( \dfrac{2\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } } \\

 = \sf{ \dfrac{ 4 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  sin \bigg( \dfrac{4\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } } \\

 = \sf{ \dfrac{ 8 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  2sin \bigg( \dfrac{4\pi}{9}  \bigg)  cos\bigg( \dfrac{4\pi}{9}  \bigg) } } \\

 = \sf{ \dfrac{ 8 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  sin \bigg( \dfrac{8\pi}{9}  \bigg)  } } \\

 = \sf{ \dfrac{ 8 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  sin \bigg( \pi - \dfrac{\pi}{9}  \bigg)  } } \\

 = \sf{ \dfrac{ 8 sin ^{2} \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg)}{  sin \bigg( \dfrac{\pi}{9}  \bigg)  } } \\

 = \sf{  8 sin  \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 \cdot2sin  \bigg( \dfrac{\pi}{9}  \bigg)  sin \bigg( \dfrac{2\pi}{9}  \bigg)  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 \cdot \bigg \{cos  \bigg( \dfrac{2\pi}{9}  -  \dfrac{\pi}{9}  \bigg)  -  cos  \bigg( \dfrac{2\pi}{9}   +  \dfrac{\pi}{9}  \bigg)\bigg \}  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 \cdot \bigg \{cos  \bigg(\dfrac{\pi}{9}  \bigg)  -  cos  \bigg( \dfrac{3\pi}{9}   \bigg)\bigg \}  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 \cdot \bigg \{cos  \bigg(\dfrac{\pi}{9}  \bigg)  -  cos  \bigg( \dfrac{\pi}{3}   \bigg)\bigg \}  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 \cdot \bigg \{cos  \bigg(\dfrac{\pi}{9}  \bigg)  - \dfrac{1}{2}  \bigg \}  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  4 cos  \bigg(\dfrac{\pi}{9}  \bigg) sin \bigg( \dfrac{4\pi}{9}  \bigg)  - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  2 \cdot2 sin \bigg( \dfrac{4\pi}{9}  \bigg) cos  \bigg(\dfrac{\pi}{9}  \bigg)   - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  2 \cdot \bigg \{ sin \bigg( \dfrac{4\pi}{9}   + \dfrac{\pi}{9}  \bigg)  + sin \bigg( \dfrac{4\pi}{9}    - \dfrac{\pi}{9}  \bigg)  \bigg \} - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  2 sin \bigg( \dfrac{5\pi}{9}    \bigg)  + 2sin \bigg( \dfrac{3\pi}{9}      \bigg)   - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  2 sin \bigg(\pi -  \dfrac{4\pi}{9}    \bigg)  + 2sin \bigg( \dfrac{\pi}{3}      \bigg)   - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{  2 sin \bigg( \dfrac{4\pi}{9}    \bigg)  + 2 \times \dfrac{ \sqrt{3} }{2}         - 2  sin \bigg( \dfrac{4\pi}{9}  \bigg) } \\

 = \sf{   \sqrt{3}         } \\

So, the required value of k=3

Similar questions