Math, asked by Archanagahatraj, 3 months ago

Tan ^2 60° + 4cos ^2 45° + sec ^2 30° + 5cos ^2 90°
___________________________
cosec 30° + sec 60° - cot ^2 30°​

Answers

Answered by Anonymous
23

Given to find value of :-

 \dfrac{tan {}^{2}60\degree + 4cos {}^{2}45 \degree+ sec {}^{2}30\degree + 5cos {}^{2} 90\degree  }{cosec30\degree + sec60\degree - cot {}^{2} 30\degree}

Solution:-

We have to know some Trigonmetric values

  • tan60° = √3
  • cos45° = 1/√2
  • sec30° = 2/√3
  • cos90° = 0
  • cosec30° = 2
  • sec60° = 2
  • cot30° = √3

Now Substitute the values

Once refer attachment

Know more :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Trigonmetric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Attachments:
Similar questions