tan^2 x/(secx-1)=(1-cosx)/(1+cosx)
Answers
Answered by
1
tan(x) = sin(x)/cos(x)
sec(x) = 1/cos(x)
sin^2(x) = 1 - cos^2(x)
LHS:
tan^2(x)/(sec(x) + 1)
tan^2(x)/(1/cos(x) + 1)
tan^2(x)/[(1 + cos(x)/cos(x)]
tan^2(x) * cos(x)/(1 + cos(x)
sin^2(x)/cos^2(x) * cos(x)/(1 + cos(x))
[1 - cos^2(x)]/[cos(x)*(1 + cos(x)]
(1 - cos(x))(1 + cos(x))/[cos(x)*(1 + cos(x))]
(1 - cos(x))/cos(x)
LHS = RHS
Proved
Remember the identity tan^2 x = sec^2 x - 1 [derivation: cos^2 + sin^2 = 1 from the Pythagorean theorem; divide by cos^2 to get 1 + tan^2 = sec^2] Also... show more
sec(x) = 1/cos(x)
sin^2(x) = 1 - cos^2(x)
LHS:
tan^2(x)/(sec(x) + 1)
tan^2(x)/(1/cos(x) + 1)
tan^2(x)/[(1 + cos(x)/cos(x)]
tan^2(x) * cos(x)/(1 + cos(x)
sin^2(x)/cos^2(x) * cos(x)/(1 + cos(x))
[1 - cos^2(x)]/[cos(x)*(1 + cos(x)]
(1 - cos(x))(1 + cos(x))/[cos(x)*(1 + cos(x))]
(1 - cos(x))/cos(x)
LHS = RHS
Proved
Remember the identity tan^2 x = sec^2 x - 1 [derivation: cos^2 + sin^2 = 1 from the Pythagorean theorem; divide by cos^2 to get 1 + tan^2 = sec^2] Also... show more
Similar questions
Math,
7 months ago
Math,
7 months ago
Hindi,
7 months ago
History,
1 year ago
Math,
1 year ago
World Languages,
1 year ago
Social Sciences,
1 year ago