Math, asked by vaishnavi9530, 1 year ago

tan 20 tan 80 cot 50=√3​

Answers

Answered by misbahul1
17

Answer:

hope it can helpful to you

Attachments:
Answered by FelisFelis
6

Step-by-step explanation:

Consider the provided information.

tan 20 tan 80 cot 50=√3​

Consider the left hand side.

\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ}

\tan ( 50 - 30 )^{\circ} \times \tan (50 + 30)^{\circ} \times \frac{1}{\tan 50^{\circ}}

Use the identity:

tan(A-B)=\frac{tan A- tan B}{1+tan A.tan B}\\tan(A+B)=\frac{tan A+tan B}{1-tan A.tan B}

\frac{ tan 50^{\circ}-tan 30^{\circ}}{1+tan 56^{\circ}\times tan 30^{\circ}}\times \frac{ tan 50^{\circ}+tan 30^{\circ}}{1-tan 56^{\circ}\times tan 30^{\circ}} \times \frac{1}{tan 50^{\circ}}

\frac{ tan 50^{\circ}-\frac{1}{\sqrt{3}}}{1+tan 56^{\circ}\times\frac{1}{\sqrt{3}}}\times \frac{ tan 50^{\circ}+\frac{1}{\sqrt{3}}}{1-tan 50^{\circ}\times\frac{1}{\sqrt{3}}}\times \frac{1}{tan 50^{\circ}}

\frac{3 tan^250^{\circ} - 1 }{3 tan 50^{\circ}-tan^350^{\circ}}

-cot (150^{\circ})

cot 30^{\circ}\\\sqrt{3}

Hence, proved

#Learn more

Prove this trignometric identity please​

https://brainly.in/question/14292842

Similar questions