Math, asked by Astro8826, 1 year ago

Tan 25 tan 31 + tan 31 tan 34 + tan 34 + yan 25

Answers

Answered by MaheswariS
1

\textbf{To find:}

\text{The value of $tan25^{\circ}\,tan31^{\circ}+tan31^{\circ}\,tan34^{\circ}+tan34^{\circ}\,tan25^{\circ}$}

\textbf{Solution:}

\text{We know that,}

tan90^{\circ}=\infty

tan(25^{\circ}+65^{\circ})=\infty

\text{Using the following identity}

\boxed{\bf\,tan(A+B)=\frac{tanA+tanB}{1-tanA\,tanB}}

\dfrac{tan25^{\circ}+tan65^{\circ}}{1-tan25^{\circ}\,tan65^{\circ}}=\infty

\implies\,1-tan25^{\circ}\,tan65^{\circ}=0

\implies\,1-tan25^{\circ}\,tan(31^{\circ}+34^{\circ})=0

\implies\,1-tan25^{\circ}\,(\dfrac{tan31^{\circ}+tan34^{\circ}}{1-tan31^{\circ}\,tan34^{\circ}})=0

\implies\,1-tan31^{\circ}\,tan34^{\circ}-tan25^{\circ}\,(tan31^{\circ}+tan34^{\circ})=0

\implies\,1-tan31^{\circ}\,tan34^{\circ}-tan25^{\circ}\,tan31^{\circ}-tan25^{\circ}\,tan34^{\circ})=0

\text{Rearranging terms, we get}

\therefore\bf\,tan25^{\circ}\,tan31^{\circ}+tan31^{\circ}\,tan34^{\circ}+tan34^{\circ}\,tan25^{\circ}=1

Find more:

7tan(a-b)=5tan(a+b) then find the value of sin2a\sin2b​

https://brainly.in/question/16800034

यदि A+B+C= 90 तो सिद्ध कीजिए: tanAtanB+tanBtanC+tanCtanA=1

https://brainly.in/question/15268179

Similar questions