tan 27° + cot 63° The value of is tan 27° (sin 25° + cos 65°) (SSC CPO 2013] (a) cosec 25° (b) 2 tan 27° (c) sin 25 (d) tan 65
Answers
Answered by
14
Answer:
Coss 25°
hope it's help you!!!
Answered by
1
Given :
To Find : Value
(a) cosec 25°
(b) 2 tan 27°
(c) sin 25
(d) tan 65
Solution:
tan x = cot (90° - x)
Sinx = cos(90° - x)
cot 63° = cot ( 90° - 27°) = tan27°
cos 65° = cos ( 90° - 25°) =sin 25°
= Cosec 25°
Correct option is option a) Cosec 25°
Learn More:
Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ
brainly.in/question/10480120
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
brainly.in/question/2769339
Attachments:
Similar questions