Math, asked by sn237873, 1 month ago

tan 27° + cot 63° The value of is tan 27° (sin 25° + cos 65°) (SSC CPO 2013] (a) cosec 25° (b) 2 tan 27° (c) sin 25 (d) tan 65​

Answers

Answered by Misstension
14

Answer:

Coss 25°

hope it's help you!!!

Answered by amitnrw
1

Given :   \dfrac{\tan 27^{\circ}+\cot 63^{\circ}}{tan 27^{\circ}(\sin 25^{\circ}+\cos 65^{\circ})}

To Find :   Value

(a) cosec 25°

(b) 2 tan 27°

(c) sin 25

(d) tan 65​

Solution:

\dfrac{\tan 27^{\circ}+\cot 63^{\circ}}{\tan 27^{\circ}(\sin 25^{\circ}+\cos 65^{\circ})}

tan x = cot (90° - x)

Sinx = cos(90° - x)

cot 63° = cot ( 90° - 27°)  = tan27°

cos 65° = cos ( 90° - 25°)  =sin 25°

\dfrac{\tan 27^{\circ}+\cot 63^{\circ}}{\tan 27^{\circ}(\sin 25^{\circ}+\cos 65^{\circ})}

=\dfrac{\tan 27^{\circ}+\tan 27^{\circ}}{\tan 27^{\circ}(\sin 25^{\circ}+\sin 25^{\circ})}

=\dfrac{2\tan 27^{\circ}}{\tan 27^{\circ}(2\sin 25^{\circ})}

=\dfrac{1}{ \sin 25^{\circ}}

= Cosec 25°

Correct option  is  option a)  Cosec 25°

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Attachments:
Similar questions