tan^2a-7sin^3a=k.
sin^3a+tan^2a=k+1.
find the value of a
Answers
Answered by
0
Answer:
tan^2a-7sin^3a=k.
sin^3a+tan^2a=k+1.
Step-by-step explanation:
search-icon-header
Search for questions & chapters
search-icon-image
Question
Bookmark
If
tanA
tan3A
=k, then
sinA
sin3A
is equal to
Hard
Solution
verified
Verified by Toppr
Correct option is
C
k−1
2k
,k
∈(
3
1
,3)
Using tan3A=
1−3tan
2
A
3tanA−tan
3
A
We get
tanA
tan3A
=k=
1−3tan
2
A
3−tan
2
A
So, tan
2
A=
1−3k
k−3
=
1−sin
2
A
sin
2
A
So, sin
2
A=
4(k−1)
k−3
Now,
sinA
sin3A
=
sinA
3sinA−4sin
3
A
=3−4sin
3
A=3−
1−k
k−3
=
k−1
2k
Now, tan
2
A>0
So,
3k−1
k−3
>0
So, k<
3
1
or k>3
Similar questions
Economy,
1 day ago
Math,
1 day ago
CBSE BOARD X,
2 days ago
Social Sciences,
8 months ago
Math,
8 months ago