Tan^2a + cot^2a + 2=sec^2acosec^2a
Answers
Answered by
1
To prove ---> tan²A + Cot²A + 2 = Sec²A Cosec²A
Proof---> LHS
= tan²A + Cot²A +2
= ( tanA )² +( CotA )² + 2 tanA ( 1 / tanA )
We know that , 1 / tanA = CotA , applying it here we get,
= ( tanA )² + ( CotA )² + 2 tanA CotA
We have am identity as follows,
( a + b )² = a² + b² + 2ab , we get
= ( tanA + CotA )²
We know that,
tanA = SinA /CosA , CotA = CosA/ SinA , applying it here we get,
= { ( SinA / CosA ) + ( CosA + SinA ) }²
Taking LCM as SinA CosA, we get,
= { ( Sin²A + Cos²A ) / SinA CosA }²
We know that Sin²A + Cos²A = 1 , applying it we get,
= ( 1 / SinA CosA )²
= 1 / Sin²A Cos² A
= ( 1 / Sin²A ) ( 1 / Cos²A )
We know that,
CosecA = 1 / SinA , and SecA = 1 / CosA , applying it , we get,
= Cosec²A Sec²A = RHS
Similar questions