Tan^2a - cot^2a = sec^2a(1-cot^2a) prove
Answers
Answered by
12
Answer:
sin^2a/cos^2a - cos^2a/sin^a = 1/cos^2a(1-cos^2a/sin^a)
sin^4a-cos^4a/cos^2a*sin^2a = 1/cos^2a - cos^2a/sin^2a*cos^2a
(sin^2a+cos^2a)(sin^2a-cos^2a)/cos^2a*sin^2a = sin^a - cos^2a/cos^2a*sin^2a
(1)(sin^2a-cos^2a)/cos^2a*sin^2a= sin^a - cos^2a/cos^2a*sin^2a
sin^a - cos^2a/cos^2a*sin^2a = sin^a - cos^2a/cos^2a*sin^2a
Hence proved
Similar questions
English,
6 months ago
Science,
6 months ago
Math,
6 months ago
CBSE BOARD X,
1 year ago
English,
1 year ago