tan^2A + cot^2A = sec^2Acosec^2A - 2
Answers
Answered by
23
LHS=tan2A+cot2A
=sin2A/cos2A +cos2A/sin2A
= sin4A+cos4A/sin2A.cos2A
=(sin2A+cos2A)^2-2sin2Acos2A/
sin2Acos2A
=1-2sin2Acos2A/ cos2Asin2A
=sec2Atan2A-2
=sin2A/cos2A +cos2A/sin2A
= sin4A+cos4A/sin2A.cos2A
=(sin2A+cos2A)^2-2sin2Acos2A/
sin2Acos2A
=1-2sin2Acos2A/ cos2Asin2A
=sec2Atan2A-2
swetpatel89:
It is sec2A* in RHS
Answered by
13
Answer:
Step-by-step explanation:
LHS=tan^2 A+cot^2A
=sin^2A /cos^2A +cos^2 A/sin^2 A
=sin^4A +cos^4A /cos^2 A. sin^2 A
=(sin^2 A+cos^2A) ^2 - 2sin^2 A. cos^2 A/cos^2 A. sin^2 A
=(1) ^2 - 2sin^2 A. cos^2 A/cos^2 A. sin^2 A
=1-2sin^2 A. cos^2 A/cos^2 A.sin^2 A
=(1/cos^2 A. sin^2 A)-(2/2sin^2 A. cos^2 A)
= 1/cos^2 A. 1/sin^2 A-2
=sec^2 A. cosec^2 A-2
RHS=sec^2 A. cosec^2 A-2
So LHS=RHS(proved).
Similar questions