Math, asked by tanuaes2016, 1 year ago

tan 2A=cot(A-24°) find A​

Answers

Answered by sagnikmondal50
1

Answer:

A=38°......please mark as brainliest.

Attachments:
Answered by thebrainlykapil
64

Given :

  • tan 2A = cot(A - 24°)

 \\

To Find :

  • The Value of A

 \\

Formula Used :

  • tanθ = cot (90° - θ)

 \\

Solution :

⟹ tan 2A = cot(A - 24°)

⟹ cot (90° - 2A) = cot (A - 24°)

⟹ 90° - 2A = A - 24°

⟹ 90° + 24° = A + 2A

⟹ 114° = A + 2A

⟹ 114° = 3A

⟹ 114° / 3 = A

38° = A

Thus Value of A is 38°

________________

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}

Similar questions