tan^2A - sin^2A = tan^2A sin^2A
Answers
To prove:
- tan²A-sin²A=tan²A.sin²A
Solution:
Consider LHS
Apply formula:
- tan²A=sin²A/cos²A
Taking LCM
Taking sin²A common
Replace 1-cos²A with sin²A
Replace sin²A/cos²A with tan²A
Learn trigonometric identities:
Answer:
To prove:
tan²A-sin²A=tan²A.sin²A
Solution:
Consider LHS
\sf\hookrightarrow tan^2A-sin^2A↪tan
2
A−sin
2
A
Apply formula:
tan²A=sin²A/cos²A
\hookrightarrow\sf \dfrac{sin^2 A }{cos^2 A}-sin^2A↪
cos
2
A
sin
2
A
−sin
2
A
Taking LCM
\hookrightarrow\sf \dfrac{sin^2 A-cos^2A. sin^2A }{cos^2A}↪
cos
2
A
sin
2
A−cos
2
A.sin
2
A
Taking sin²A common
\hookrightarrow\sf \dfrac{sin^2 A(1-cos^2A) }{cos^2A}↪
cos
2
A
sin
2
A(1−cos
2
A)
Replace 1-cos²A with sin²A
\hookrightarrow\sf \dfrac{sin^2 A(\bf{sin^2A}) }{cos^2A}↪
cos
2
A
sin
2
A(sin
2
A)
Replace sin²A/cos²A with tan²A
\hookrightarrow\sf sin^2A.tan^2A↪sin
2
A.tan
2
A
\underline{\boxed{\cal {\blue{HENCE\; PROVED}}}}
HENCEPROVED
Learn trigonometric identities:
\begin{gathered}\boxed{\begin{array}{l c }\textsf{ Important Trigonometric identities }:- \\ \\ $\: \\\tt 1)\: sin^2\theta+ cos^2\theta=1 \\ \\ \tt 2)\:sin^2\theta= 1-cos^2\theta \\ \\\tt 3)\:cos^2\theta=1-sin^2\theta \\ \\ \tt 4)\:1+cot^2\theta=\tt{cosec}^2 \, \theta \\ \\\tt5)\: \tt{cosec}^2 \, \theta-cot^2\theta =1 \\ \\ \tt6)\:\tt{cosec}^2 \, \theta= 1+cot^2\theta \\\ \\\tt 7)\:sec^2\theta=1+tan^2\theta \\ \\ \tt8)\:sec^2\theta-tan^2\theta=1 \\ \\ \tt 9)\:tan^2\theta=sec^2\theta-1$\end{array}}\end{gathered}