Tan^2A - tan ^2 B=sin sq A-sin sq B/cos sq A*cos sq B
Answers
Answered by
10
Correct Question:
Prove that : tan² A - tan² B = ( sin² A - sin² B ) / cos²A. cos² B
Solution:
tan² A - tan² B = ( sin² A - sin² B ) / cos²A. cos² B
Consider LHS
= tan² A - tan² B
Since tan² Φ = sin² Φ / cos² Φ
Taking LCM
Using trigonometric identity cos² Φ = 1 - sin² Φ
Cancelling like terms in the numerator
= RHS
Hence proved.
Similar questions