Math, asked by jeesha07, 9 months ago

Tan^2A - tan ^2 B=sin sq A-sin sq B/cos sq A*cos sq B

Answers

Answered by Anonymous
10

Correct Question:

Prove that : tan² A - tan² B = ( sin² A - sin² B ) / cos²A. cos² B

Solution:

tan² A - tan² B = ( sin² A - sin² B ) / cos²A. cos² B

Consider LHS

= tan² A - tan² B

Since tan² Φ = sin² Φ / cos² Φ

  \sf   = \dfrac{sin^{2} A}{cos^{2} A}  -  \dfrac{sin^{2} B}{cos ^{2} B}

Taking LCM

  \sf   = \dfrac{sin^{2} A .cos^{2} B +  sin^{2} B.cos ^{2}A}{cos^{2}A cos ^{2} B}

Using trigonometric identity cos² Φ = 1 - sin² Φ

  \sf   = \dfrac{sin^{2} A (1 - sin^{2} B)  -   sin^{2} B(1 - sin ^{2}A)}{cos^{2}A cos ^{2} B}

  \sf   = \dfrac{sin^{2} A  - sin^{2}A. sin^{2} B  -  sin^{2} B + sin^{2} B sin^{2}A}{cos^{2}A cos ^{2} B}

Cancelling like terms in the numerator

  \sf   = \dfrac{sin^{2} A  -  sin^{2} B }{cos^{2}A cos ^{2} B}

= RHS

Hence proved.

Similar questions