Math, asked by lokeshgarasiya, 1 year ago

tan^2a- tan^2b then prove that sin^2a-sin^2b/(cos^2a)(cos^2b)


wixmatwishwa: You want to Tan^2a- tan^2b =sin^2a-sin^2b/(cos^2a)(cos^2b)

Answers

Answered by wixmatwishwa
51
Tan^2a- tan^2b =sin^2a-sin^2b/(cos^2a)(cos^2b)

L.H.S = 
cos^2(a)cos^(b)
           =sin^2(a)/cos^2(a) - sin^2(b)/cos^2(b)
           = {sin^2(a).cos^2(b) - sin^2(b).cos^2(a)}/cos^2(a)cos^(b)
           = {sin^(a).[1 - sin^(b)] - sin^2(b).[1 - sin^2(a)]} /
cos^2(a)cos^(b)
           ={sin^2(a) -
 sin^(a)sin^(b) - sin^2(b) +sin^2(b)sin^2(a)}/cos^2(a)cos^(b)
          =
sin^2(a) - sin^2(b) /cos^2(a)cos^(b)//

lokeshgarasiya: very wonderful !!!!!!
Answered by triptiverma888
1

Answer:

Step-by-step explanation:

Similar questions