tan^2a- tan^2b then prove that sin^2a-sin^2b/(cos^2a)(cos^2b)
wixmatwishwa:
You want to Tan^2a- tan^2b =sin^2a-sin^2b/(cos^2a)(cos^2b)
Answers
Answered by
51
Tan^2a- tan^2b =sin^2a-sin^2b/(cos^2a)(cos^2b)
L.H.S = cos^2(a)cos^(b)
=sin^2(a)/cos^2(a) - sin^2(b)/cos^2(b)
= {sin^2(a).cos^2(b) - sin^2(b).cos^2(a)}/cos^2(a)cos^(b)
= {sin^(a).[1 - sin^(b)] - sin^2(b).[1 - sin^2(a)]} /cos^2(a)cos^(b)
={sin^2(a) - sin^(a)sin^(b) - sin^2(b) +sin^2(b)sin^2(a)}/cos^2(a)cos^(b)
=sin^2(a) - sin^2(b) /cos^2(a)cos^(b)//
L.H.S = cos^2(a)cos^(b)
=sin^2(a)/cos^2(a) - sin^2(b)/cos^2(b)
= {sin^2(a).cos^2(b) - sin^2(b).cos^2(a)}/cos^2(a)cos^(b)
= {sin^(a).[1 - sin^(b)] - sin^2(b).[1 - sin^2(a)]} /cos^2(a)cos^(b)
={sin^2(a) - sin^(a)sin^(b) - sin^2(b) +sin^2(b)sin^2(a)}/cos^2(a)cos^(b)
=sin^2(a) - sin^2(b) /cos^2(a)cos^(b)//
Answered by
1
Answer:
Step-by-step explanation:
Similar questions