tan^2theta +sec^2theta plus 1=2+2cot^2theta by cosec^2theta-1
Answers
Question : -
tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)
ANSWER
Given : -
Prove that ;
tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)
Required to prove : -
- LHS = RHS
Identity used : -
- sin² @ + cos² @ = 1
Solution : -
tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)
Consider the LHS part;
tan² @ + sec² @ + 1
Here, let's simplify this LHS part
➔ tan² @ + sec² @ + 1
➔ (sin² @)/(cos² @) + (1)/(cos² @) + 1
Taking cos² @ as LCM
➔ (sin² @ + 1 + cos² @)/(cos² @)
➔ ([sin² @ + cos² @ ]+ 1)/(cos² @)
since, sin² @ + cos² @ = 1
➔ (1+1)/(cos² @)
➔ (2)/(cos² @)
Now,
Let's consider the RHS part;
(2 + 2cot² @)/(cosec² @ - 1)
Here, let's simplify this further
➔ (2 + 2cot² @)/(cosec² @ - 1)
➔ (2 + 2 x [cos² @]/[sin² @] )/( [1]/[sin² @] - 1)
➔ (2 + [2cos² @]/[sin² @])/([1]/[sin² @] - 1)
➔ ([2sin² @ + 2cos² @]/[sin² @])/([1 - sin² @]/[sin² @])
sin² @ get's cancelled on both numerator & denominator
➔ (2sin² @ + 2cos² @)/(1 - sin² @)
Taking 2 as common in numerator
➔ (2[sin² @ + cos² @])/(1 - sin² @)
since, sin² @ + cos² = 1
➔ (2[1])/(cos² @)
➔ (2)/(cos² @)