Math, asked by deepika553006, 7 months ago

tan^2theta +sec^2theta plus 1=2+2cot^2theta by cosec^2theta-1​

Answers

Answered by MisterIncredible
13

Question : -

tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)

ANSWER

Given : -

Prove that ;

tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)

Required to prove : -

  • LHS = RHS

Identity used : -

  • sin² @ + cos² @ = 1

Solution : -

tan² @ + sec² @ + 1 = (2 + 2cot² @)/(cosec² @ - 1)

Consider the LHS part;

tan² @ + sec² @ + 1

Here, let's simplify this LHS part

tan² @ + sec² @ + 1

(sin² @)/(cos² @) + (1)/(cos² @) + 1

Taking cos² @ as LCM

(sin² @ + 1 + cos² @)/(cos² @)

([sin² @ + cos² @ ]+ 1)/(cos² @)

since, sin² @ + cos² @ = 1

(1+1)/(cos² @)

(2)/(cos² @)

Now,

Let's consider the RHS part;

(2 + 2cot² @)/(cosec² @ - 1)

Here, let's simplify this further

(2 + 2cot² @)/(cosec² @ - 1)

(2 + 2 x [cos² @]/[sin² @] )/( [1]/[sin² @] - 1)

(2 + [2cos² @]/[sin² @])/([1]/[sin² @] - 1)

([2sin² @ + 2cos² @]/[sin² @])/([1 - sin² @]/[sin² @])

sin² @ get's cancelled on both numerator & denominator

(2sin² @ + 2cos² @)/(1 - sin² @)

Taking 2 as common in numerator

(2[sin² @ + cos² @])/(1 - sin² @)

since, sin² @ + cos² = 1

(2[1])/(cos² @)

(2)/(cos² @)

LHS = RHS

➔ Hence Proved !

Similar questions