Math, asked by hydrakij, 6 months ago

tan^2thetacos^2theta = 1-cos^2theta​

Answers

Answered by MrPhantom
0

♀ Question ♀

Prove that

 {tan}^{2}θ \:  {cos}^{2} θ = 1 -  {cos}^{2}  θ.

♀ Solution ♀

LHS =

 {tan}^{2}θ \:  {cos}^{2} θ</p><p> [/tex]

= \frac{ {sin}^{2 \: θ } }{ {cos}^{2 \: θ} } \times {cos}^{2} θ [/tex]

 </p><p>=  {sin}^{2} θ

 </p><p>= 1 -  {cos}^{2} θ

= RHS

Hence Proved!

{\small \orange{\bigstar{ \small{ \underline{ \underline{ \underline{ \bold { \color{aqua}{And \:  We  \: Are \:  Done :-}}}}}}}}}

Attachments:
Answered by singhmaninder32368
0

Step-by-step explanation:

L.H.S

Tan^2theta×cos^2theta

=sin^2theta/cos^2theta×cos^2theta (tan theta= sin theta/ cos theta)

=sin^2theta

R.H.S

1-Cos^2theta

=sin^2theta

L.H.S=R.H.S

Hence proved

Similar questions