tan^2x + (1-√3)tanx -√3=0
solve for x
Answers
Answered by
28
Given,
⇒tan²x + ( 1 - √3 ) tan x - √3 = 0
⇒ tan²x + tan x - √3 tan x - √3 = 0
Taking out tan x as common from first two terms and ( -√3 ) from last two terms,
⇒ tan x ( tan x + 1 ) - √3 ( tan x + 1 ) = 0
Taking out ( tan x + 1 ) as common,
⇒ ( tan x + 1 ) ( tan x - √3 ) = 0
⇒ ( tan x + 1 ) = 0 ÷ ( tan x - √3 )
⇒ ( tan x + 1 ) = 0
•°• tan x = -1
" Or "
⇒ ( tan x + 1 ) ( tan x - √3 ) = 0
⇒ ( tan x - √3 ) = 0 ÷ ( tan x + 1 )
⇒ ( tan x - √3 ) = 0
•°• tan x = √3.
Hence, tan x = -1 or √3.
When , tan x = -1
We know that , tan 135° = -1
So, x = -135°
When , tan x = √3
We know that,
⇒ tan 60° = √3
Or
⇒tan -120° = √3
•°• x = 60° or -120°
Hence, x = 60° , 135° , -120°
⇒tan²x + ( 1 - √3 ) tan x - √3 = 0
⇒ tan²x + tan x - √3 tan x - √3 = 0
Taking out tan x as common from first two terms and ( -√3 ) from last two terms,
⇒ tan x ( tan x + 1 ) - √3 ( tan x + 1 ) = 0
Taking out ( tan x + 1 ) as common,
⇒ ( tan x + 1 ) ( tan x - √3 ) = 0
⇒ ( tan x + 1 ) = 0 ÷ ( tan x - √3 )
⇒ ( tan x + 1 ) = 0
•°• tan x = -1
" Or "
⇒ ( tan x + 1 ) ( tan x - √3 ) = 0
⇒ ( tan x - √3 ) = 0 ÷ ( tan x + 1 )
⇒ ( tan x - √3 ) = 0
•°• tan x = √3.
Hence, tan x = -1 or √3.
When , tan x = -1
We know that , tan 135° = -1
So, x = -135°
When , tan x = √3
We know that,
⇒ tan 60° = √3
Or
⇒tan -120° = √3
•°• x = 60° or -120°
Hence, x = 60° , 135° , -120°
Answered by
0
Answer:
Step-by-step explanation:
Given,
from above equation, we get
tanx =
tanx = -1 ,
x = n or n +
where n ∈ Z
Similar questions