tan^2x + cot^x = 2 please solve this question.
Answers
Answered by
0
Step-by-step explanation:
RHS=2
LHS=tan^2x + cot^2x
=(tanx + cotx)^2+2tanx.cotx....(a+b)^2=a^2 + b^2+2ab
=(sinx÷cosx + cosx÷sinx)^2+2×1.....cause tan×cot=1
=(sin^2x+cos^2x÷cosx × sinx)^2+2
=(1÷cosx × sinx)^2+2.....cause sin^2+cos^2=1
=1÷cos^2x × sin^2x+2
=2(cos^2x × sin^2x)÷cos^2x × sin^2x
=2
hence LHS=RHS
Similar questions