Biology, asked by aalijah4473, 1 year ago

(Tan^3 theta /1+tan^2 theta)+(cot^3 theta/1+ tan^2 theta

Answers

Answered by muskan04163
1

Answer:

here is your answer hope it will help you please marked as brainlist

Attachments:
Answered by TRISHNADEVI
1

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \tt{  \frac{tan {}^{3 } \theta }{1 + tan {}^{2}  \theta}  +  \frac{cot {}^{3 } \theta }{1 + cot{}^{2}  \theta} } \\  \\    \tt{ =  \frac{ \frac{sin {}^{3}  \theta}{cos {}^{3}   \theta} }{sec {}^{2}  \theta}  +   \frac{ \frac{cos {}^{3}  \theta}{sin {}^{3}   \theta} }{cosec {}^{2}  \theta}} \\  \\  \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  \frac{1}{sec {}^{2} \theta } ) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  \frac{1}{cosec {}^{2} \theta } ) } \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  cos {}^{2} \theta) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  sin {}^{2} \theta ) }

\tt{  = \frac{sin {}^{3}  \theta}{cos \:  \theta}  +  \frac{cos {}^{3}  \theta}{sin \:  \theta} }  \\  \\ \tt{ =  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta}{sin \: \theta .cos \:  \theta}  }\\  \\    \tt{=  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta  + 2.sin {}^{2} \theta.cos {}^{2}  \theta -2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta .cos \:  \theta} }  \tt{ =  \frac{(sin {}^{2} \theta + cos {}^{2} \theta) {}^{2}    - 2.sin {}^{2} \theta.cos {}^{2}  \theta}{sin \: \theta . cos \:  \theta}}

 \tt{=   \frac{(1) {}^{2}   - 2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta. cos \:  \theta}}  \\  \\ \tt{   = \frac{1   - 2.sin {}^{2} \theta.cos  {}^{2}  \theta }{sin \: \theta .cos \:  \theta}} \\  \\ \tt{  =  \frac{1}{sin \: \theta.cos \:  \theta}   -  \frac{2.sin {}^{2}  \theta .cos  {}^{2} \theta}{sin \: \theta .cos \:  \theta} } \\  \\    \tt{=  \frac{1}{sin \:  \theta} . \frac{1}{cos \:  \theta }- 2 \: sin \:  \theta \: \cos \:  \theta }\\  \\ \tt{  = cosec \:  \theta \:sec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta } \tt{= sec \:  \theta \: cosec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta}

FORMULA USED

 \tt{1. \:  \: tan  \: A =  \frac{sin \: A}{cos \: A}  \:  \implies \: tan {}^{2}   \: A =  \frac{sin  {}^{2} \: A}{cos {}^{2}  \: A}  } \\  \\  \tt{2. \:  \: cot  \: A =  \frac{cos \: A}{sin\: A}  \:  \implies \: cot{}^{2}   \: A =  \frac{cos  {}^{2} \: A}{sin {}^{2}  \: A} } \\  \\  \tt{3. \:  \:1 + tan {}^{2} A = sec {}^{2} A } \\  \\ \tt{4. \:  \:1 + cot{}^{2} A = cosec {}^{2} A } \\  \\  \tt{5. \:  \:  \frac{1}{sec \: A} = cos \: A } \\  \\  \tt{6. \: \:  \frac{1}{cosec \:A }  = sin \: A } \\  \\

Similar questions