Math, asked by rajeevtomar983781, 1 month ago

tan 30 = sin 45º cos 45º + sin 30°, then find the value of 0​

Answers

Answered by Ladylaurel
10

Correct Question:

\sf{tan \: 3\theta = sin \: {45}^{\circ} \: cos \: {45}^{\circ} + sin \: {30}^{\circ}}

Find the value of \bf{\theta}

Answer :-

L.H.S = \sf{sin \: {45}^{\circ} \: cos \: {45}^{\circ} + sin \: {30}^{\circ}}

 \\  \\  \\ \sf{\dashrightarrow \: sin \: {45}^{\circ} \: cos \: {45}^{\circ} + sin \: {30}^{\circ}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{\sqrt{2}} \times \: cos \: {45}^{\circ} + sin \: {30}^{\circ}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}} + sin \: {30}^{\circ}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}} + \dfrac{1}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1 \times 1}{\sqrt{2} \times  \sqrt{2}} + \dfrac{1}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{\sqrt{4}} + \dfrac{1}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{\sqrt{2 \times 2}} + \dfrac{1}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{1}{2} + \dfrac{1}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{2}{2}}

 \\  \\  \\ \sf{\dashrightarrow \:  \dfrac{ \not{2}}{ \not{2}}}

 \\  \\  \\ \sf{\dashrightarrow \:  1}

We got,

 \sf{\dashrightarrow \: tan \: 3\theta = 1}

⠀⠀⠀⠀⠀ ⠀⠀⠀___________________

According the question,

  • The value of \sf{\theta}

We know,

 \underline{\boxed{\sf{tan \: {45}^{ \circ} = 1}}}

Therefore,

 \sf{\dashrightarrow \: 3\theta = 45}

 \sf{\dashrightarrow \: \theta = \dfrac{45}{3}}

 \sf{\dashrightarrow \: \theta =  \cancel{\dfrac{45}{3}}}

 \sf{\therefore \:  \underline{\theta = 15}}

⠀⠀⠀⠀⠀ ⠀⠀__________________

THINGS TO REMEMBER :-

  • \sf{sin \: {45}^{\circ} = \dfrac{1}{\sqrt{2}}}

  • \sf{cos \: {45}^{\circ} = \dfrac{1}{\sqrt{2}}}

  • \sf{sin \: {30}^{\circ} = \dfrac{1}{2}}

  • \sf{tan \: {45}^{\circ} = 1}
Answered by AbhinavRocks10
2

Step-by-step explanation:

Answer: 15º

Step-by-step explanation:

Given: tan 3x = sin 45º cos 45º + sin 30°.

To find: Value of x

Previous Knowledge:

Basic trigonometry values

0º 30º 45º 60º 90º

Sin θ 0 1/2 1/√2 √3/2 1

Cos θ 1 √3/2 1/√2 1/2 0

Tan θ 0 1/√3 1 √3 ∞

Cot θ ∞ √3 1 1/√3 0

Sec θ 1 2/√3 √2 2 ∞

Cosec θ ∞ 2 √2 2/√3 1

Solution:

=> tan 3x =  \frac{1}{\sqrt{2} }

  ×\frac{1}{\sqrt{2} } + \frac{1}{2}

➪=> tan 3x = \frac{1}{2}

=> tan 3x = 1 [Since tan 45º = 1 ]

=> 3x = 45º

  • ➪=> x = \frac{45}{3}

= 15º

Thanks!

Similar questions