tan 31 × 40 + x = tan 37.x
Given tan 31 = 0.6
And tan 37 = 0.75
Answers
Answer:
Step-by-step explanation:
Let the function y f(x) take the values y0
, y1
, , yn corresponding to
the values x0, x1, , xn of x. Let these values of x be equispaced such that
xi x0 ih (i 0, 1, ). Assuming y(x) to be a polynomial of the nth degree
in x such that 0 01 1 () () , ,, . ( ) n n yx y yx y yx y We can write
INTERPOLATION • 275
yx a a x x a x x x x a x x x x x x ( ) ( ) ( )( )( ) 01 0 2 0 1 3 0 1 2 – ( – )( – ) – – –
– – 0 1 –1 ( )( ) ( – ) n n ax x x x x x (1)
Putting x x0
, x1
, , xn successively in (1), we get
0 01 0 11 0 2 0 12 0 22 0 2 1 y ay a ax x y a ax x ax x x x , – , (–) ( ) ( )( ) – –
and so on.
From these, we find that 0 0 0 1 0 11 0 1 a y y y y a x x ah , () – –
1 0
1 a y h
Also 1 2 1 12 1 22 0 2 1
2
12 0 2
( ) ( )( )
2
y y y ax x ax x x x
a h a hh y h a
2
2 10 0 2 2
1 1
2 2! a yy y h h
Similarly 3
3 0 3
1
3! a y h
and so on.
Substituting these values in (1), we obtain
2 3
00 0
0 0 01 012 2 3 ( ) ( ) ( )( ) ( )( )( ) 2! 3!
yy y yx y x x x x x x x x x x x x h h h
(2)
Now if it is required to evaluate y for x x0 ph, then
0 10 0 ( ) , ( ) ( 1) , x x ph x x x x x x ph h p h
000 ( ) ( ) ( 1) ( 2) xx xx xx p hh p h etc.
Hence, writting y(x) = y(x0
+ ph) = yp
, (2) becomes
2 3
00 0 0
( 1) ( 1)( 2)
2! 3! p
pp pp p y y py y y
0
( 1) -1
3!
n pp p n
y (3)
It is called Newton’s forward interpolation formula as (3) contains y0
and the forward differences of y0
Otherwise: Let the function y f(x) take the values y0
, y1
, y2
, corresponding to the values x0
, x0 h, x0 2h, of x. Suppose it is required to
evaluate f(x) for x x0 ph, where p is any real number.
276 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE
For any real number p, we have defined E such that
() ( ) p E f x f x ph
0 00 ( ) ( ) (1 ) p p
p y f x ph E f x y [ E 1 ]
2 3
0 0
( 1) ( 1)( 2) 1 2! 3!
pp pp p p yy
(4)
[Using binomial theorem]
i.e., 2 3
00 0 0
( 1) ( 1)( 2)
2! 3! p
pp pp p y y py y y
If y f(x) is a polynomial of the nth degree, then n1
y0
and higher differences will be zero.
Hence (4) will become
2 3
00 0 0
0
( 1) ( 1)( 2)
2! 3!
( 1) 1
3!
p
n
pp pp p y y py y y
pp p n
y
Which is same as (3)
Obs. 1. This formula is used for interpolating the values of y
near the beginning of a set of tabulated values and extrapolating
values of y a little backward (i.e., to the left) of y0
.
Obs. 2. The first two terms of this formula give the linear interpolation while the first three terms give a parabolic interpolation and so on.