(Tan 32°-1) ( tan 77° +1) = ?? . step by step ans
Answers
Answer:
Question
12. (tan32 −1)(tan77∘+1)
Answer
(sin(32)−cos(32))sin(77∘)+(sin(32)−cos(32))cos(77∘)cos(32)cos(77∘)
Explanation
Apply Multiplicative Distribution Law: tan(32)×(tan(77∘)+1)−(tan(77∘)+1)
Remove the parentheses: tan(32)×(tan(77∘)+1)−tan(77∘)−1
Apply Multiplicative Distribution Law: tan(32)tan(77∘)+tan(32)−tan(77∘)−1
Combine like terms: (tan(32)−1)tan(77∘)+tan(32)−1
Transform the expression using the quotient identity: (sin(32)cos(32)−1)tan(77∘)+tan(32)−1
Find common denominator and write the numerators above common denominator: sin(32)−cos(32)cos(32)tan(77∘)+tan(32)−1
Transform the expression using the quotient identity: sin(32)−cos(32)cos(32)⋅sin(77∘)cos(77∘)+sin(32)cos(32)−1
Write as a single fraction : (sin(32)−cos(32))sin(77∘)cos(32)cos(77∘)+sin(32)cos(32)−1
Find common denominator and write the numerators above common denominator: (sin(32)−cos(32))sin(77∘)+sin(32)cos(77∘)−cos(32)cos(77∘)cos(32)cos(77∘)
Combine like terms: (sin(32)−cos(32))sin(77∘)+(sin(32)−cos(32))cos(77∘)cos(32)cos(77∘)