tan 350
35° +2 tan20 = tan x then x =
Answers
Answered by
1
Answer:
20 = 55 - 35
∴ tan(20)=tan(55-35)
tan(20)=
1+tan55+tan35
tan55−tan35
(∴tan(A+B)=
1−tanA.tanB
tanA+tanB
)
Now, 55+35=90
35 = 90 - 55
tan 35 = tan(90-55)
tan 35 = cot(55) ∵tan(90−θ)=cotθ
Thus, tan 20 =
1+tan55.cot55
tan55−tan35
∴tan(20)×(1+1)=tan55−tan35 (∵tanθ.cotθ=1)
∴2tan20+tan35=tan55.
Step-by-step explanation:
Similar questions