Math, asked by kevindave881, 17 days ago

tan 3A • tan 7A = 1 so A =?​

Answers

Answered by hasinithirukovaluri
4

Answer:

Step-by-step explanation:

plz mark me as brainlist

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: tan3A. \: tan7A = 1 \\

can be rewritten as

\rm \: tan3A = \dfrac{1}{tan7A} \\

\rm \: tan3A = cot7A \\

can be rewritten as

\rm \: tan3A =tan (90 \degree \:  -  \: 7A) \\

\rm \: 3A = 90 \degree \:  -  \: 7A \\

\rm \: 3A  + 7A= 90 \degree \: \\

\rm \: 10A= 90 \degree \: \\

\rm\implies \:\boxed{ \rm{ \:\rm \: A= 9 \degree \:  \: }}\\

\rule{190pt}{2pt}

Alternative Method for general solution :-

\rm \: tan3A. \: tan7A = 1 \\

\rm \: \dfrac{sin3A}{cos3A}  \times \dfrac{sin7A}{cos7A}  = 1 \\

\rm \: \dfrac{sin3A \: sin7A}{cos3A \: cos7A}   = 1 \\

\rm \: cos7A \: cos3A = sin7A \: sin3A \\

\rm \: cos7A \: cos3A  -  sin7A \: sin3A = 0 \\

\rm \: cos(7A + 3A) = 0 \\

\rm \: cos10A = 0 \\

\rm\implies \:10A = (2n + 1)\dfrac{\pi}{2}  \: \: \forall \: n \in \: Z\\

\rm\implies \:\boxed{ \rm{ \:A = (2n + 1)\dfrac{\pi}{20}  \: \: \forall \: n \in \: Z \: }} \: \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions