Math, asked by sarojkumarpradhan124, 2 months ago

tan^3x derivative of the function​

Answers

Answered by gogoi18priyabrat
1

Answer:

tan^3x derivative of the function is 3.tan^2(x).sec^2(x)

Step-by-step explanation:

Let,

y=tan ^3x

dy/dx=d/dx(tan^3(x))

dy/dx=3.tan^2(x).d/dxtan(x)

dy/dx=3.tan^2(x).sec^2(x)

Answered by sandy1816
0

let \:  \:  \:  \:  \:  \:  \: y =  {tan}^{3} x \\  \\  \frac{dy}{dx}  = 3 {tan}^{2} x \:  \frac{d}{dx} tanx \\  \\  \frac{dy}{dx}  = 3 {tan}^{2} x \:  {sec}^{2} x

Similar questions