Math, asked by ashats90499, 1 year ago

Tan(π÷4 + A÷2) = 1 ÷ secA - tanA

Answers

Answered by pinquancaro
1

To Prove:  \tan(\frac{\Pi }{4}+\frac{A}{2}) =  \frac{1}{\sec A-\tan A}

Consider LHS :

 \tan(\frac{\Pi }{4}+\frac{A}{2})

By using the identity  \tan(A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

 =\frac{\tan \frac{\Pi }{4}+\tan \frac{A}{2}}{1-\tan \frac{\Pi }{4} \tan \frac{A}{2}}

 =\frac{1+\tan \frac{A}{2}}{1- \tan \frac{A}{2}}

Converting in Sine and Cosine form, we get

=  \frac{\cos\frac{A}{2}+ \sin \frac{A}{2}}{\cos\frac{A}{2}- \sin \frac{A}{2}}

= \frac{\cos\frac{A}{2}+ \sin \frac{A}{2}}{\cos\frac{A}{2}- \sin \frac{A}{2}} \times \frac{\cos\frac{A}{2}+ \sin \frac{A}{2}}{\cos\frac{A}{2}+ \sin \frac{A}{2}}

= \frac{(\cos\frac{A}{2}+ \sin \frac{A}{2})^{2}}{\cos^{2}\frac{A}{2}- \sin^{2} \frac{A}{2}}

= \frac{(\cos^{2}\frac{A}{2}+ \sin^{2} \frac{A}{2}+2 \sin \frac{A}{2} \cos\frac{A}{2})}{\cos{A}}

= \frac{(1+\sin A)}{\cos{A}}

= \sec A + \tan A

Now, consider RHS of the equation,

 \frac{1}{\sec A-\tan A}

= \frac{1}{\sec A-\tan A} \times \frac{\sec A + \tan A}{\sec A + \tan A}

=  \frac{\sec A+\tan A}{\sec^{2} A - \tan^{2} A}

=  \sec A + \tan A

Therefore, LHS = RHS.

Hence, proved.

Answered by rohitkumargupta
2

HELLO DEAR,



TO PROVE :-


Tan(π/4 + A/2) = 1 /( secA - tanA)



WE KNOW:-


sin²A + cos²A = 1,


cos²A - sin²A = cos2A


2sinAcosA = sin2A



\bold{tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}}



so, \bold{tan(\Pi/4 + A/2) = \frac{tan\Pi/4 + tanA/2}{1 - tan\Pi/4*tanA/2}}



[tanπ/4 = 1]



\bold{\Rightarrow tan(\Pi/4 + A/2) = \frac{1 + tanA/2}{1 - tanA/2}}



\bold{\Rightarrow \frac{1 + \frac{sinA/2}{cosA/2}}{1 - \frac{sinA/2}{cosA/2}}}



\bold{\Rightarrow \frac{sinA/2 + cosA/2}{cosA/2 - sinA/2}}



\bold{\Rightarrow \frac{sinA/2 + cosA/2}{sinA/2 - cosA/2} * \frac{cosA/2 + sinA/2}{cosA/2 + sinA/2}}



\bold{\Rightarrow \frac{(sinA/2 + cosA/2)^2}{(cos^2A/2 - sin^2A/2)}}



\bold{\Rightarrow \frac{(sin^2A/2 + cos^2A/2) + 2sinA/2*cosA/2}{cos2*(\frac{A}{2})}}



\bold{\Rightarrow \frac{1 + sinA}{cosA}}



\bold{\Rightarrow} secA + tanA



\bold{\Rightarrow \frac{secA + tanA}{sec^2A - tan^2A}}


\bold{\to\to\to\to\to\to\to\to\to\to\to\boxed{sin^2\Theta - tan^2\Theta = 1}}



\bold{\Rightarrow \frac{1}{secA - tanA} * \frac{secA + tanA}{secA + tanA}}



\bold{\therefore, \Rightarrow \frac{1}{secA - tanA}}



\mathbb{\ulcorner \star HENCE,\, L.H.S = R.H.S \star \urcorner}



I HOPE ITS YOU DEAR,


THANKS


rohitkumargupta: ┌⋆HENCE,L.H
rohitkumargupta: thanks bhaiaya
Similar questions