tan(π\4+a) / tan(π\4-a) = 1+sin2a / 1-sin2a
Answers
Answered by
1
Answer:
Step-by-step explanation:
tan(π\4+a) / tan(π\4-a) = 1+sin2a / 1-sin2a
By taking Lhs:
tan(π\4+a) / tan(π\4-a)
now expand the numerator and denominator using the frmla:
tan(x±y) = tanx ±tany/1± tanx.tany
by simplifying:
(1+tanA)²/(1-tanA)²
= (1 + tan²a + 2tanA)/(1 + tan²a - 2tanA)
now we no that 1 + tan²A= sec²a soooo
and sec²a = 1/ cos²a
∴ 1/cos²a + 2.sinA/cosA÷ 1/cos²a - 2.sinA/cosA
∴1+sin2A/1-sin2A
↔↔↔↔↔↔↔↔↔
HENCE PROVED
↔↔↔↔↔↔↔↔↔
Similar questions
Computer Science,
5 months ago
Chemistry,
5 months ago
Math,
11 months ago
Math,
1 year ago
Math,
1 year ago