tan[π/4+A]+tan[π/4-A] divide by tan[π/4+A]-tan[π/4-A] =cosec2A
Answers
Answered by
0
Answer:
Step-by-step explanation:
tan[π/4+A]+tan[π/4-A]/tan[π/4+A]-tan[π/4-A]
//Solve numerator and denominator separately
tan[π/4+A]+tan[π/4-A]
//Tan (A+B) = TanA+ TanB / 1- TanATanB;
//Tan (A-B) = TanA - TanB / 1 + TanATanB
=> Tan(π/4) + TanA/ 1 - Tan{π/4}TanA + Tan(π/4) - TanA/ 1 + Tan{π/4}TanA
=> 1 + TanA/ 1 - TanA + 1 - TanA/1+TanA
= 2(1+Tan²A) / 1 - Tan²A
//Now for denominator
tan[π/4+A]-tan[π/4-A]
=> Tan(π/4) + TanA/ 1 - Tan{π/4}TanA - Tan(π/4) - TanA/ 1 + Tan{π/4}TanA
=> 1 + TanA/ 1 - TanA - 1 - TanA/1+TanA
= 2(2TanA) / 1 - Tan²A
//Substitute back the values in main equation
2(1+Tan²A) / 1 - Tan²A / 2(2TanA) / 1 - Tan²A
= 2Sec²A /4TanA
=1/2sincosa
= 1/Sin2A
= Coesc2a
= R.H.S
Hence Proved
Answered by
0
Similar questions