Math, asked by chandrawanshivk555, 1 year ago

tan(π/4+x/2)+tan(π/4-x/2)=2secx

Answers

Answered by mysticd
21

Answer:

 \red { tan\left( \frac{\pi}{4}+\frac{x}{2}\right) + tan\left( \frac{\pi}{4}-\frac{x}{2}\right)}\green {=2secx}

Step-by-step explanation:

 LHS = tan\left( \frac{\pi}{4}+\frac{x}{2}\right) + tan\left( \frac{\pi}{4}-\frac{x}{2}\right)

 Let \: \frac{x}{2} = A\: ---(1)

 = tan\left( \frac{\pi}{4}+A\right) + tan\left( \frac{\pi}{4}-A\right)

 = \frac{tan\frac{pi}{4}+tanA}{1-tan\frac{\pi}{4}}+\frac{tan\frac{pi}{4}+tanA}{1-tan\frac{\pi}{4}}

\boxed {\pink { tan(A+B)= \frac{tanA + tanB}{1 -tanAtanB}}}

\boxed {\orange { tan(A-B)= \frac{tanA - tanB}{1 +tanAtanB}}}

 = \frac{ 1+ tanA}{1-tanA} + \frac{1-tanA}{1+tanA}

 = \frac{(1+tanA)^{2} + (1-tanA)^{2}}{(1-tanA)(1-tanA)}

 = \frac{2( 1 + tan^{2}A)}{1 - tan^{2}A}

\boxed { \pink { \since , (a+b)^{2}+(a-b)^{2} = 2(a^{2}+b^{2})}}

\boxed { \orange { (a-b)(a+b) = a^{2} - b^{2}}}

 = \frac{ 2sec^{2}A}{1-tan^{2}A}

/* Divide numerator and denominator by sec²A ,we get

 = \frac{2}{\frac{1}{sec^{2}A}- \frac{tan^{2}A}{sec^{2}A}}

 = \frac{2}{ cos^{2}A - sin^{2}A}

 = \frac{2}{cos2A}

\boxed {\blue { cos^{2}A - sin^{2}A = cos2A}}

 = \frac{2}{cos2\times \frac{x}{2}}\:[From \:(1)]

 = \frac{2}{cosx}

 = 2sec\:x

 = R.H.S

Therefore.,

 \red { tan\left( \frac{\pi}{4}+\frac{x}{2}\right) + tan\left( \frac{\pi}{4}-\frac{x}{2}\right)}\green {=2secx}

•••♪

Similar questions