Tan (π/4+x ) = cos x + sin x / cos x - sin
x
Answers
Answered by
24
Given trigonometric identity : tan (x+π/4) = (cosx + sinx) / (cosx - sinx)
Start from left hand side :
tan (x+π/4)
Apply formula : tan (a+b) = (tana + tanb) / (1 - tana tanb)
= (tanx + tan(π/4) ) / (1 - tanx tan(π/4))
Substitute : tan(π/4) = 1
= (tanx + 1 ) / (1 - tanx (1))
= (tanx + 1 ) / (1 - tanx )
Substitute : tanx = sinx / cosx
= ((sinx/cosx) + 1 ) / (1 - (sinx/cosx))
= ((sinx+cosx)/cosx) / ((cosx-sinx)/cosx)
Both denominators gets canceled.
= (cosx + sinx) / (cosx - sinx)
Start from left hand side :
tan (x+π/4)
Apply formula : tan (a+b) = (tana + tanb) / (1 - tana tanb)
= (tanx + tan(π/4) ) / (1 - tanx tan(π/4))
Substitute : tan(π/4) = 1
= (tanx + 1 ) / (1 - tanx (1))
= (tanx + 1 ) / (1 - tanx )
Substitute : tanx = sinx / cosx
= ((sinx/cosx) + 1 ) / (1 - (sinx/cosx))
= ((sinx+cosx)/cosx) / ((cosx-sinx)/cosx)
Both denominators gets canceled.
= (cosx + sinx) / (cosx - sinx)
Similar questions