Math, asked by mkophgusb, 1 year ago

tan(π/4 + x) / tan(π/4 - x) = {( 1+ tan x )/ (1- tan x )}^2 ​

Answers

Answered by Swarnimkumar22
15

 \bf \underline {\underline{Solution-}}

 \bf \: Used  \: Formulas -

 \boxed{ \bf \:1. \:  \: tan \:(A + B ) =  \frac{tanA \:  + tanB}{1 -tanA.tanB } }

 \bf \: LHS =  \frac{ tan( \frac{\pi}{4}  + x)}{tan (\frac{\pi}{4}  - x)}

  \bf \: let \: First  \: we  \: solve  \:  \because \: tan( \frac{\pi}{4}  + x) \\  \\  \\  \implies \bf \:  \frac{tan \frac{\pi}{4}  + tan \: x}{1 - tan \frac{\pi}{4} .tan \: x}  \\  \\   \\  \implies \: \bf \: we \: can \: write \: it \: as \:  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{1 + tan \: x}{1 - tan \: x} ........(1) \:  \:  \:  \:  \:  \:  \:  \:  \huge \{ \tiny \: tan(a + b) =  \frac{tan \: a + tan \: b}{1 - tan \: a. \: tan \: b}  \\  \\  \\   \implies \bf \: like \: that \: tan( \frac{\pi}{4}  - x) =  \frac{1 - tan \: x}{1 + tan \: x} .........(2) \\  \\  \\   \bf \: now \:dividing \: the \: equation(1) \: to \: equation(2)\:  \\  \\  \\  \therefore \bf \: LHS \:  =  \frac{tan( \frac{\pi}{4}  + x)}{tan( \frac{\pi}{4}  - x)}  =  \frac{ \frac{1 + tan \: x}{1 - tan \: x} }{ \frac{1 - tan \: x}{1 + tan \: x} }  \\  \\  \\  \implies \bf \:  \frac{1 + tan \: x}{1 - tan \: x}  \times  \frac{1 + tan \: x}{1 - tan \: x}  \\  \\  \\  \implies \bf \:  {( \frac{1 + tan \: x}{1 - tan \: x} )}^{2}

Similar questions